Use the data from a calibration plate, where the plate is empty except for a single well with a luminescent signal, to create a deconvolution matrix that can be used to adjust other experimental results.

rl_calc_decon_matrix(
  data,
  value,
  b_noise,
  time = "time",
  ref_well = "I05",
  well = "well"
)

Arguments

data

A data frame that contains the data of the calibration plate.

value

Name of the column containing the luminescent values.

b_noise

The value of the background noise, which is the average signal for the background wells that are far away from the reference well.

time

Name of the column with the time values.

ref_well

The well ID of the reference well (i.e. 'E05', 'I12")

well

Name of the column with the well ID values.

Value

a deconvolution matrix, for use in rl_adjust_plate()

Details

The deconvolution matrix will be unique for each plate type and plate-reader, so a matrix should be calculated for each combination of plate and plate reader, but once this is calculated, it can be re-used to adjust future experimental results.

Examples


fl <- system.file(
  "extdata",
  "calibrate_tecan",
  "calTecan1.xlsx",
  package = "reluxr"
)

dat <- plate_read_tecan(fl)

dat
#> # A tibble: 23,040 × 5
#>    cycle_nr time_s signal well   value
#>       <dbl>  <dbl> <chr>  <chr>  <dbl>
#>  1        1      0 OD600  A01   0.0450
#>  2        1      0 OD600  A02   0.0452
#>  3        1      0 OD600  A03   0.0453
#>  4        1      0 OD600  A04   0.0453
#>  5        1      0 OD600  A05   0.0453
#>  6        1      0 OD600  A06   0.0452
#>  7        1      0 OD600  A07   0.0458
#>  8        1      0 OD600  A08   0.0456
#>  9        1      0 OD600  A09   0.0455
#> 10        1      0 OD600  A10   0.0451
#> # … with 23,030 more rows

mat_d <- dat |>
  dplyr::filter(signal != "OD600") |>
  dplyr::filter(time_s > 500) |>
  rl_calc_decon_matrix(value, time_s, ref_well = "E05", b_noise = 30)

image(log10(mat_d))